
[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A Study on Automatic Test Case Generation
Sucheta Bhat*1, Dr. Prashanth C M2

*1 Masters in Technology at Sapthagiri College of Engineering, Bangalore, India
2 Head of Department of Computer Science and Engineering with Sapthagiri College of

Engineering, Bangalore, India

sucheta.india@gmail.com

Abstract
Software testing is a process of evaluating a software item to detect the difference between given input and expected

output. Software testing is one of the important step in software development lifecycle. Testing is a challenging task

as it requires that user requirements be completely and properly understood before testing and also be able to test and

deliver the product in less time. The purpose of this paper is to identify different ways in which testing time can be

reduced thereby increasing accuracy. The paper focuses on automatically generating test cases which when generated

manually requires more time and effort. The paper broadcasts various methods followed to generate test cases

automatically and discusses the pros and cons of the methods used. Further the currently followed approach, the pros

and cons of the approach is shown.

Keywords: Testing, Test Case Generation.

 Introduction
Software engineering is a discipline whose aim is

the production of fault free software that satisfies the

user's needs and that is delivered on time and within

budget. The Software development life cycle (SDLC),

sometimes referred to as the Application development

life-cycle, is used in systems engineering, information

systems , software engineering, and represents a

process for creating or altering information systems,

the models and methodologies that people use to

develop these systems. The Phases of Software

Development Lifecycle include:

 Requirements gathering and analysis

 Design

 Implementation or coding

 Testing

 Deployment and Maintenance

Figure 1 Software Development Lifecycle

 Software testing is a process of verifying and

validating a software application or program that

meets the business and technical requirements that

guides its design, development, works as expected and

also identifies important errors or flaws categorized as

per the severity level in the application that must be

fixed [1]. Software testing is one of the most important

aspects in the software development lifecycle. Testing

software allows validation of business requirements

conformance, functional correctness of individual

components, quality assurance and robustness of the

system.

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

 The main objective of testing is to prove that

the software product meets a set of pre-established

acceptance criteria. There are two components to this

objective. The first component is to prove that the

requirements specification from which the software

was designed is correct. The second component is to

prove that the design and coding correctly respond to

the requirements. Correctness means that function,

performance, and timing requirements match

acceptance criteria [1].

 A test case is a set of conditions or variables

under which a tester will determine whether a system

under test satisfies requirements or works correctly

[1]. It is the responsibility of the Quality Assurance

(QA) team to certify that a software system has been

tested functionally. The QA team needs to setup a test

strategy, create test case documents for different types

of testing, execute the tests and provide a report of the

defects that are subsequently identified during testing.

Test case documents creation is important as it forms

the basis for testing the software system.

 The QA or Testing team creates test cases for

each use case of the software to be tested. For effective

testing, the test case documents must cover and trace

all paths that are existent in a software system.

Manually creating the test cases requires lot of effort

by the testing team and increases the production cost

for software product being developed. To reduce the

time, effort and consequentially the cost associated

with creating test cases, it is imperative to develop

methodologies to automatically generate test cases.

 Software designers and developers

extensively use the Unified Modelling Language to

design and develop software systems. UML is a

general purpose modelling language. It was started to

capture the behaviour of complex software and non-

software system. UML provides elements and

components to support the requirement of complex

software [1] and diagrams [2][3][4] to understand a

system in better and simple way. A single diagram is

not sufficient to cover all aspects of the system. So

UML defines various kinds of diagrams to cover most

of the aspects of a system that include Structural,

behavioural and interactional diagrams.

 This paper focuses on discussing various

techniques used for generating the test cases manually

as well as automatically, pros and cons of the methods

followed and ways to improve them.

Literature survey

Boghdady, et. al. [5] explores different approaches for

generation of test cases from different models. Model

based testing (MBT) refers to the type of testing

process that focuses on deriving a test model using

different types of formal testing methods, then

converting this test model into a concrete set of test

cases[6][7][8]. These formal models have many

different types, but all of them are generally

categorized into three main categories: requirements

models, usage models, and source code dependant

models. The requirements models can be behavioral,

interactional, or structural models according to the

perspective by which the requirements are being

looked at. The test cases derived from behavioral or

interactional models are functional test cases and they

have the same level of abstraction as the models

creating them. These kinds of test cases differ from

those derived using structural models.

 Quality of test cases depends on how well they cover

the functionalities of the system under test [9], [10]

and not only on their form [11]. The test cases should

be validated against known quality standards [12],

[13], [14] which determine their acceptable form as

well as the degree of their functional coverage which

in turn specifies their level of applicability. Many

metrics have emerged and are being used to measure

the quality of the test cases being generated like the

time, cost, effort, complexity of generation, coverage

criteria and many others [15], [16]. The Unified

Modeling Language (UML) models are considered

one of the most highly ranked ones being used.

Categorization of UML diagrams yields to

categorization of test cases generation techniques

according to diagrams being used. This includes:

Behavioural Diagrams: Describes the behavioural

features of a system or business process and examples

are Activity, State Chart, and Use Case diagram.

Interactional Diagrams: These diagrams are subset

of behavioural diagrams that accentuate object

interactions and examples include Communication,

Sequence and Timing Diagrams

Structural Diagrams: Emphasize elements of

specification, which are irrespective of time and their

examples include Class, Component, Object, Package,

Deployment and Composite Structure diagrams.

Behavioral and Interactional UML Models-based

Techniques

 Activity diagrams can be used to derive test

scenarios, a technique uses a method called gray-box

method. The technique contains manual steps in the

algorithm of test generation. It doesn’t handle fork-

join efficiently and this limits the scope of the

technique. It also doesn’t do by all the paths; it only

defines the basic paths. The fork-join structure

problem was solved by the technique which uses an

abstraction model obtained from fully expanded

activity diagrams produced by only subjecting the

external inputs and outputs. The model is then

converted into a flow graph that is finally used to

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

extract test cases meeting the all-paths coverage

criteria.

 The interaction diagram is similar to

the activity diagram, in that both visualize a sequence

of activities. The difference is that, for an interaction

diagram, each individual activity is pictured as a frame

which can contain a nested interaction diagrams. This

makes the interaction diagram useful to "deconstruct a

complex scenario that would otherwise require

multiple if-then-else paths to be illustrated as a single

sequence diagram. Other types of diagrams have been

used in many approaches to generate test cases like

state chart, collaboration, and sequence diagrams. An

algorithm that transforms a state chart diagram into an

intermediate diagram, called the Testing Flow Graph

(TFG) is shown [17]; from the TFG it generates test

cases that apply the full state and full transition

coverage criteria

Structural UML Models-based Techniques

 Class and object diagrams are used to generate

test cases. The methodology accepts the application

code as input and runs it to create a list called the class

list which contains features of classes mentioned in the

application; it then uses this class list to extract the

features of each class as well as the relationships

between them. Finally test cases are generated based

on these features and relationships. Another approach

presented uses class, object, and state diagrams to

define models written in a tool language called the

Intermediate Format (IF). Descriptions written in IF

can be animated, verified, and used to generate tests.

Kaur, et. al. [18] presents a systematic survey of work

done in the field of automatic generation of test cases

particularly related to UML-based automatic test case

generation. This survey aims at summarizing the

current state of the art in automatic test case generation

research by covering questions below. The questions

are:

1) What are various UML techniques used for

automatic test case generation?

o Search-based software test case

generation

o Finite State Machine

o Model-based testing

The authors focus on UML-based techniques. The key

techniques found were: UML diagrams, State Chart

Diagrams, Sequence Diagrams, Activity Diagrams,

Class Diagrams, Collaboration diagrams.

2) Which is the most widely used technique?

The most widely used techniques involve combination

of various UML techniques for example use case and

state diagram. This can be best analyzed from the bar

graph given below. It can be easily noted that activity

diagram and sequence diagram are the most widely

used approaches so far. One of the oldest approaches

for model-based testing is by using Use Case and State

Diagrams. In this approach, the models are

transformed into usage models to describe both system

behavior and its usage. The method is intended for

integration into an iterative software development

process model.

Figure 2 Most widely used techniques for test case

generation[18]

3) What are the broad areas covered by these

techniques?

 The broad areas covered by these techniques

includes Web applications, real time embedded

systems, artificial intelligence planning, spreadsheets,

system on chip designs and reactive systems, OO

systems, SOA interacting services.

 Anand, et. al. [19] discusses automatic test case

generation techniques. This includes model-based

testing, random-based testing and search-based

testing.

1) Model-based testing(MBT) is a lightweight

formal method, which uses models of

software for derivation of test suites. In

contrast to traditional formal methods, which

aim at verifying programs against formal

models, MBT aims at gathering insights in

the correctness of a program using often-

incomplete test approaches.

2) Random-based testing is one of the most

fundamental and popular testing methods.

This is simple in concept, easy to implement

and can be used on its own as a component of

testing methods.

3) In Search-based testing, an optimization

algorithm is used to automate the search for

test data that maximizes the achievement of

test goals, while minimizing testing costs.

 Frohlisch, et. al. [20] talks about automatically

generating test cases from Use Cases. The steps are:

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

1) Formal transformation of a detailed use case

description including pre- and post-

conditions to a UML state model

2) Generation of test cases from the state model.

 To construct a State Machine given the Use

Case description following mappings are used: Main

Success Scenario is the straightforward sequence of

steps leading to the achievement of the user’s goal

without consideration of possible problems. With each

step, possible error situation and their resolution can

be described in the Extensions. Further, there may be

different alternative ways to execute a step. These

alternatives are described as Variations. The

Preconditions captures constraints, which the state of

the world must satisfy before the use case can be

executed. These are typically properties of the user or

the state of program execution. The Post-conditions on

the other hand describes the conditions, which the use

case establishes. Thus, Pre- and Post-conditions

together define the contract of the use case. A step in

the use case can refer to another use case being called.

The UML state model is constructed making use of

these notations.

 In the next step to generate test cases from the

UML model a planning problem called STRIPS is

used. STRIPS is the most widely used AI planning

formalism to derive a test suite for a given state chart.

In the search space of a STRIPS planning problem,

each state is described by a set of propositions, which

hold in that state. A set of operators describes the

transitions among the states. The planning task is to

find a sequence of operators, which safely connects the

initial state to the final state. STRIPS problem allows

to systematically search for paths in the state machine,

which satisfy all preconditions of the transitions.

Using this planning technique ensures that the test

sequences derived from the state machine are

consistent in the sense that the preconditions of all

transitions in the sequence are satisfied.

 However, this approach had additional manual

steps, such as:

1) The expected system response has to be

added to the test sequence manually to yield

complete test cases.

2) Although constraints are derived on the test

inputs automatically, the concrete test data

still has to be defined manually

 So, in the future, this approach can be extended by

providing stronger coverage criteria. The authors

concentrate on use cases, so in future it can be done for

model-based and structural-based diagrams.

Shanthi, et. al. [21] presents a survey on automatic test

case generation using model-based testing through use

of a UML model of systems. Three types are discussed

here: Model-based, Scenario-based, and Genetic-

based. Scenario-based mainly focuses on concurrent

processes only in an activity diagram. Model-based

systems focus on State Charts, Sequence, Object and

Use-Case diagrams but do not produce optimal

solution. Genetic-based produces optimal but

generates faulty test cases. This survey tells that in

spite of not producing an optimal solution model-

based testing is preferred by many researchers as they

utilize less human effort and low cost.

 Gupta, et. al. [22] discusses Model-Based Testing

(MBT) and automatic test case generation using MBT.

Model-based test generation basically means

functional testing for which test specification is given

as a test model. In MBT test cases are derived

automatically. The paper introduces MBT and

software models as examples in addition to advantages

of MBT and limitations of the approaches. A

comparison between traditional manual testing and

MBT shows that MBT is cheaper and faster. Test cases

generated using MBT are effective in terms of code

coverage and saves significant amount of man-hours

required for test case generation per application.

Figure 3 Savings due to early defect discovery[22]

The MBT approach is associated with several boons

and benefits, which offer certain advantages over

manual test case generation. They are:

1) Ability to Detect Functional faults earlier

2) Allows finding Faults even before

Implementation Phase

3) Comprehensive test cases

4) Design is spontaneous.

 Cavarra, et. al. [23] presents architecture for

model-based testing using profile of UML. Class,

Object and State diagrams can be used to define

essential models. Models written in this profile can be

compiled into a tool language: The Intermediate Form

(IF). Description written in IF can be animated,

verified and used to generate tests.

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

Figure 4 An Architecture for Automatic Test Case

Generation[23]

 The Intermediate Format (IF) language was

developed to sit between high-level specification

languages, such as Sdl, Promela or Lotos, and tool-

specific internal representations. IF representations

can be passed between tools, and translated into other

languages: for example, Sdl specifications can be

analyzed using the Spin model-checker. Moreover,

translating high-level languages into IF may also allow

extending some parts of their semantics: for example

IF is used to give a precise timed semantics to Sdl.

The choice of using IF as an intermediate format

between the AML modeling language and the test

generation tool is motivated by several arguments:

 First of all, it allows us to re-use some of the

tools already developed within the IF

environment.

 Moreover, using IF offers a relative flexibility

when defining the AGEDIS Modeling

Language semantics: for a given AML

construct, translation schemes can be

foreseen, independently of the simulation

engine.

 Finally, the potential loss of efficiency

caused by the use of an intermediate

representation is largely compensated by the

optimization tools available at the IF level.

Class diagrams are description of set of objects that

share same attributes, operation, relationships and

semantics. Each class is drawn as a rectangle with 3

compartments: top holds class name, middle holds list

of attributes, bottom holds list of operations. The Class

diagrams are created as part of a software product’s

development process, this depicts all the components

in the software. This helps in creating test cases as all

the components and the relation between them can be

laid out in the diagram. In order to generate a

successful test case it is important that all components

of a system and all the paths traversed by these

components are covered in the test cases.

Object diagrams represent the state of a system at

certain point in time, as collection of objects, each in

particular state. Also describes initial configuration of

system model.

 Kaur, et. al. [24] describes an approach used

for generating test cases automatically using a

Sequence Diagram. The steps followed here are:

1. Using Rational Rose software, construct a

Sequence diagram and save it with an .mdl

extension.

2. Capture the object names by parsing the .mdl

file.

3. Build a tree using object names and apply

genetic algorithm’s crossover technique.

4. Then convert new generated trees into binary

trees.

5. Traversing is done by Depth First Search

method of binary trees.

6. All the valid, invalid and termination of the

application can be obtained using step 5.

 This approach generates test sequences

automatically but does not concentrate on number of

faults revealed in the unit level or in the integration

level.

 Prasanna, et. al. [25] speaks about

generating test cases automatically using Object

Diagrams. Here are the steps that are followed to

automatically generate the test cases:

1. Construct object diagram using Rational

Rose software. The diagram is stored with an

.mdl extension.

2. Parse the .mdl file and capture the object

names.

3. Build a tree using object names and apply

genetic algorithm’s cross over technique.

4. New generation of trees are formed which are

then converted it to binary trees.

5. Traverse new generation of binary trees using

Depth First Search technique.

6. All the valid and termination sequences of the

application can be obtained using Step 5.

Review Outcome
After the test sequences are generated by

using mutation testing on the generated test cases

method used to generate test cases revealed 80% fault

in unit level and 88% in the integration level.

The approach applied for object diagram is

applied on the class diagram. The intention of

choosing class diagram is that class diagrams provide

more information than object diagrams and hence it is

expected that accuracy of revealing the faults in the

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

unit level and integration level would be higher than

that of object diagrams.

Conclusion
 A discussion on various approaches used for

generating the test cases manually as well as

automatically has been covered in this paper. Also,

comparison is made between generating test cases

manually and automatically[22] showing that

automatic test case generation provides more accurate

results than manually generated test cases. Finally, an

approach called mutation testing is discussed that

when applied on the method that generates test cases

automatically reveals number of faults[25] in the unit

level as well as integration level.

References
[1] V.Mary Sumalatha, Dr G.S.V.P.Raju, "UML

based Automated Test Case Generation technique

using Activity-Sequence diagram", The

International Journal of Computer Science &

Applications (TIJCSA), Volume 1, No. 9,

November 2012 ISSN – 2278-1080

[2] S. K. Swain. UML-based Testing of Software

System, Technical Report, KIIT, 2005.

[3] T. Dinh Trong: “A Systematic Procedure for

Testing UML Designs”. ISSRE(2003).

[4] Korel, B. 1990. Automated software test data

generation. IEEE Trans. Software Engineering,,

16(8), 1990, pp. 870 – 879

[5] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed

Hashem and Mohamed F.Tolba "Test Case

Generation and Test Data Extraction

Techniques” International Journal of Electrical

& Computer Sciences IJECS-IJENS Vol: 11 No:

03, 2011.

[6] Utting M, Legeard B. Practical Model-based

Testing: A tools approach. A Morgan Kaufmann

publisher is an imprint of Elsevier: San

Francisco, CA, 2007.

[7] Berenbach B, Paulish D, Kazmeier J, Rudorfer

A. Software and Systems Requirements

Engineering in practice. The McGraw-Hill

Companies Inc.: USA, 2009.

[8] Everett GD, McLeod R, Jr. Software Testing:

Testing across the Entire Software Development

Life Cycle. IEEE press, John Wiley & Sons, Inc.,

Hoboken: New Jersey; 2007.

[9] Lazić L and Medan M. Software Quality

Engineering versus Software Testing Process.

The Telecommunication Forum (TELFOR)

journal: Beograd, 2003.

[10] Smolander K. Quality Standards in Business

Software Development. Master of Science Thesis,

Lappeenranta University of Technology,

Department of Information Technology, 2009.

[11] Graham D, Veenendaal E, Evans I, Black R.

Foundations of Software Testing ISTQB

Certification. International Software testing

Qualifications Board, 2010.

[12] IEEE standard for software test documentation,

IEEE Std 829-1998.

[13] CMMI product team. CMMI for development v

1.3 (CMU/SEI-2010-TR-033). Carnegie Mellon

University, Software Engineering Institute, 2010.

[14] Andriole SJ (Editior). Software Validation,

Verification, Testing and documentation.

Petrocelli Books: Princeton, New Jersey, 1986.

[15] Nirpal PB and Kale KV. A Brief Overview of

Software Testing Metrics. International Journal

on Computer Science and Engineering (IJCSE),

2011.

[16] Kan SH, Parrish J, and Manlove D. In-process

metrics for software testing. IBM Systems

Journal, 2001.

[17] Huang CY, Lo JH, Kuo SY, and Lyu MR. Software

Reliability Modeling and Cost Estimation

Incorporating Testing-Effort and Efficiency.

Proceedings of the 10th International Symposium

on Software Reliability Engineering, IEEE

Computer Society: Washington, DC, USA, 1999.

[18] Dr Arvinder Kaur, Vidhi Vig, “Systematic Review

of Automatic Test Case Generation by UML

Diagrams”.

[19] Saswat Anand, Edmund Burke, Tsong Yueh Chen,

et al., “An Orchestrated Survey on Automated

Software Test Case Generation”, Journal of

Systems and Software, February 2013.

[20] Peter Frohlisch, Johannes Link, “Automated Test

Case Generation from Dynamic Models”, 2000 .

[21] A V K Shanthi, D Parthibhan, Dr G Mohan

Kumar, “A Survey of UML-based Automatic Test

Case Generation for software testing”.

[22] Gaurav Gupta, Parampreet Kaur, “Inclination

Towards Automated Model-based Test

Generation”, IJCSMC, Vol. 2, Issue. 7, July 2013,

pg.302 – 311.

[23] Alessandra Cavarra, Thierry Jeron, Alan

Hartman, Laurent Mounier, Sergey Olvovsky ,

“Using UML for Test Generation”, ISSTA, 2002.

[24] Paramjit Kaur, Rupinder Kaur, “Approaches for

Generating Test Cases Automatically to Test the

Software”, IJEAT, Volume-2, Issue-3, February

2013

[25] M. Prasanna, K.R. Chandran, "Automatic Test

Case Generation for UML Object diagrams using

Genetic Algorithm", Int. J. Advance. Soft Comput.

Appl., Vol. 1, No. 1, July 2009 ISSN 2074-8523;

[Bhat et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[4073-4079]

Copyright © ICSRS Publication, 2009 www.i-

csrs.org.

